ResinTech SIR-1300

Fe, Mn, H₂S, Arsenic Removal from Water

Aquatech Amsterdam — November 6th 2019

Background

EPA Specs

Fe	<0.3 ppm
Mn	< 0.05 ppm
H ₂ S	Not Regulated
Arsenic	< 10 ppb

All but Arsenic are secondary contaminants as per EPA

Aesthetic Concerns

- Organic red stains on fixtures, clothes, shower walls, toilets
- Particulates formation inside pipes and toilet tanks
- Metallic Taste and smell to water.
- H2S Gas produces 'Rotten Egg' odor and Taste to water

Aesthetic Concerns

Health Concerns

- Fe, Mn in water affects milk production in Milk Dairy industry
- Farms with > 75 lbs of milk per cow when Fe, Mn contents are not there
- Farms with < 50 lbs of milk per cow when Fe, Mn contents are high
- As per WHO report, high levels of Arsenic from drinking water can cause skin and lung cancer, Skin lesions, kidney failure, Heart Attack.
- High Manganese content can be a health risk to central nervous system.

Conventional Processes for Removing these Contaminants

1. Oxidation and chemical precipitation processes

- Aeration, Chlorine, and Ozone are used.
- They are used to precipitate Fe in retention tank. Supernant water is then passed through sand filter to get iron free water

2. Greensand

 Naturally occurring Greensand coated with manganese acts as a catalyst to precipitate Fe and Mn.

3. Water softening resin

- Can treat low-level of Fe and Mn up to 1-2 ppm.
- Work well with low TDS of <500 ppm.
- Requires low dissolved O2 levels so as to avoid formation of particulates
- pH needs to be lower than 8. (At higher pH, precipitation occurs and reduces the performance of resin)

4. Reverse Osmosis

- Generally removes salt, Manganese, Iron, Lead, Calcium
- Most mineral constituents of water are trapped by semi-permeable membrane and removed from drinking water when filtered through RO

5. Birm

- Removes dissolved iron and Manganese efficiently but not H2S and Arsenic
- H₂S should be removed prior to contact with Birm media

6. Pyrolox

- Granular media used to remove Fe, Mn, H2S
- It is a naturally mined ore

7. Ion Exchange

ResinTech SIR-1300

- REDOX Media with catalytic property where MnO₂ acts as a catalyst
 - ► Fe++ and O₂ get attracted to MnO₂ which converts soluble Fe++ into insoluble Fe+++
 - Soluble Mn++ is converted to insoluble Mn+++
 - H₂S is reduced to yellow sulfur particulate

7. Ion Exchange

ResinTech SIR-1300

- Similarly for Arsenic removal, arsenic is co-precipitated with the iron onto MnO₂ media as ferric arsenate.
- MnO2 reduces to MnO and ferric Hydroxide is precipitated.
- During backwash (water and Air scour), ferric hydroxide, insoluble manganese, ferric arsenate, precipitated sulfur get removed. MnO gets converted to MnO2. No chemical regenerant is used.

Pros & Cons

1. Oxidation & Chemical Precipitation Process

2. Greensand

3. Water Softening Resins

4. Reverse Osmosis

5. Birm

Effective at removing Fe & Mn

- Ineffective at removing Arsenic & H2S
- More costly (since H2S must be removed first using Birm media)
- •Uses 3x more water than SIR-1300

CONS

6. Pyrolox

PROS

Removes Fe, Mn, H2S effectively

• Does not remove Arsenic
•3x heavier than SIR-1300
• Uses 6x more water for backwash

CONS

7. Ion Exchange SIR-1300

- •Removes fairly high quantities of Fe, Mn, & Arsenic
- •Works well with pH > 6.5
- •TDS < 2500 ppm

- •Suspended solids < 10 ppm
- Alkalinity > 100 ppm to work media more effectively

CONS

THANK YOU

Parag Deval

e. pdeval@resintech.com

